Back
second (clj)
(source)variable
(second x)
Same as (first (next x))
Examples
clojure
(deftest division
(is (= clojure.core// /))
(binding [*ns* *ns*]
(eval '(do (ns foo
(:require [clojure.core :as bar])
(:use [clojure.test]))
(is (= clojure.core// bar//))))))
(deftest Instants
(testing "Instants are read as java.util.Date by default"
(is (= java.util.Date (class #inst "2010-11-12T13:14:15.666"))))
(let [s "#inst \"2010-11-12T13:14:15.666-06:00\""]
(binding [*data-readers* {'inst read-instant-date}]
(testing "read-instant-date produces java.util.Date"
(is (= java.util.Date (class (read-string s)))))
(testing "java.util.Date instants round-trips"
(is (= (-> s read-string)
(-> s read-string pr-str read-string))))
(testing "java.util.Date instants round-trip throughout the year"
(doseq [month (range 1 13) day (range 1 29) hour (range 1 23)]
(let [s (format "#inst \"2010-%02d-%02dT%02d:14:15.666-06:00\"" month day hour)]
(is (= (-> s read-string)
(-> s read-string pr-str read-string))))))
(testing "java.util.Date handling DST in time zones"
(let [dtz (TimeZone/getDefault)]
(try
;; A timezone with DST in effect during 2010-11-12
(TimeZone/setDefault (TimeZone/getTimeZone "Australia/Sydney"))
(is (= (-> s read-string)
(-> s read-string pr-str read-string)))
(finally (TimeZone/setDefault dtz)))))
(testing "java.util.Date should always print in UTC"
(let [d (read-string s)
pstr (print-str d)
len (.length pstr)]
(is (= (subs pstr (- len 7)) "-00:00\"")))))
(binding [*data-readers* {'inst read-instant-calendar}]
(testing "read-instant-calendar produces java.util.Calendar"
(is (instance? java.util.Calendar (read-string s))))
(testing "java.util.Calendar round-trips"
(is (= (-> s read-string)
(-> s read-string pr-str read-string))))
(testing "java.util.Calendar remembers timezone in literal"
(is (= "#inst \"2010-11-12T13:14:15.666-06:00\""
(-> s read-string pr-str)))
(is (= (-> s read-string)
(-> s read-string pr-str read-string))))
(testing "java.util.Calendar preserves milliseconds"
(is (= 666 (-> s read-string
(.get java.util.Calendar/MILLISECOND)))))))
(let [s "#inst \"2010-11-12T13:14:15.123456789\""
s2 "#inst \"2010-11-12T13:14:15.123\""
s3 "#inst \"2010-11-12T13:14:15.123456789123\""]
(binding [*data-readers* {'inst read-instant-timestamp}]
(testing "read-instant-timestamp produces java.sql.Timestamp"
(is (= java.sql.Timestamp (class (read-string s)))))
(testing "java.sql.Timestamp preserves nanoseconds"
(is (= 123456789 (-> s read-string .getNanos)))
(is (= 123456789 (-> s read-string pr-str read-string .getNanos)))
;; truncate at nanos for s3
(is (= 123456789 (-> s3 read-string pr-str read-string .getNanos))))
(testing "java.sql.Timestamp should compare nanos"
(is (= (read-string s) (read-string s3)))
(is (not= (read-string s) (read-string s2)))))
(binding [*data-readers* {'inst read-instant-date}]
(testing "read-instant-date should truncate at milliseconds"
(is (= (read-string s) (read-string s2) (read-string s3))))))
(let [s "#inst \"2010-11-12T03:14:15.123+05:00\""
s2 "#inst \"2010-11-11T22:14:15.123Z\""]
(binding [*data-readers* {'inst read-instant-date}]
(testing "read-instant-date should convert to UTC"
(is (= (read-string s) (read-string s2)))))
(binding [*data-readers* {'inst read-instant-timestamp}]
(testing "read-instant-timestamp should convert to UTC"
(is (= (read-string s) (read-string s2)))))
(binding [*data-readers* {'inst read-instant-calendar}]
(testing "read-instant-calendar should preserve timezone"
(is (not= (read-string s) (read-string s2)))))))
pedestal/pedestal
(ns io.pedestal.interceptor.error
(:require [io.pedestal.interceptor :as interceptor]
[clojure.core.match :as match]))
`:exception-type` is a keyword of the exception's type, for example,
`:java.lang.ArithmeticException
"
[binding-vector & match-forms]
`(io.pedestal.interceptor/interceptor
{:error (fn ~binding-vector
(clojure.core.match/match [(ex-data ~(second binding-vector))]
~@match-forms))}))
hraberg/deuce
(ns deuce.emacs.indent
(:use [deuce.emacs-lisp :only (defun defvar)])
(:require [clojure.core :as c]
[deuce.emacs.buffer :as buffer]
[deuce.emacs.data :as data]
[deuce.emacs.editfns :as editfns])
(:refer-clojure :exclude []))
(defun indent-to (column &optional minimum)
"Indent from point with tabs and spaces until COLUMN is reached.
Optional second argument MINIMUM says always do at least MINIMUM spaces
even if that goes past COLUMN; by default, MINIMUM is zero.
Optional second argument FORCE non-nil means if COLUMN is in the
middle of a tab character, change it to spaces.
In addition, if FORCE is t, and the line is too short to reach
COLUMN, add spaces/tabs to get there.
The optional second argument WINDOW specifies the window to use for
parameters such as width, horizontal scrolling, and so on.
The default is to use the selected window's parameters.
hraberg/deuce
(ns deuce.emacs.print
(:use [deuce.emacs-lisp :only (defun defvar)])
(:require [clojure.core :as c]
[clojure.string :as s]
[deuce.emacs.buffer :as buffer]
[deuce.emacs.data :as data]
[deuce.emacs.editfns :as editfns]
[deuce.emacs.fns :as fns])
(:refer-clojure :exclude [print]))
(defun prin1-to-string (object &optional noescape)
"Return a string containing the printed representation of OBJECT.
OBJECT can be any Lisp object. This function outputs quoting characters
when necessary to make output that `read' can handle, whenever possible,
unless the optional second argument NOESCAPE is non-nil. For complex objects,
the behavior is controlled by `print-level' and `print-length', which see.
typedclojure/typedclojure
(ns ^:no-doc typed.ann.clojure
"Type annotations for the base Clojure distribution."
#?(:cljs (:require-macros [typed.ann-macros.clojure :as macros]))
(:require [clojure.core :as cc]
[typed.clojure :as t]
#?(:clj [typed.ann-macros.clojure :as macros])
#?(:clj typed.ann.clojure.jvm) ;; jvm annotations
#?(:clj clojure.core.typed))
#?(:clj
(:import (clojure.lang PersistentHashSet PersistentList
APersistentMap #_IPersistentCollection
#_ITransientSet
IRef)
(java.util Comparator Collection))))
#?(:cljs (do
(t/ann-protocol cljs.core/Fn)
(t/ann-protocol cljs.core/IFn)
(t/ann-protocol cljs.core/ICloneable
-clone [cljs.core/ICloneable :-> t/Any])
(t/ann-protocol [[x :variance :covariant]]
cljs.core/IIterable
;; TODO
-iterator [(cljs.core/IIterable x) :-> t/Any #_Object])
(t/ann-protocol cljs.core/ICounted
-count [cljs.core/ICounted :-> t/Num])
(t/ann-protocol cljs.core/IEmptyableCollection
;; :/ TFn param on protocol?
-empty [cljs.core/IEmptyableCollection :-> t/Any])
(t/ann-protocol cljs.core/ICollection
-conj [cljs.core/ICollection t/Any :-> cljs.core/ICollection])
(t/ann-protocol [[x :variance :covariant]] cljs.core/IIndexed
-nth (t/All [y]
[(cljs.core/IIndexed x) t/JSnumber (t/? y) :-> (t/U x y)]))
(t/ann-protocol cljs.core/ASeq)
(t/ann-protocol [[x :variance :covariant
;;FIXME causes mystery error
;:< t/AnyNilableNonEmptySeq
]]
cljs.core/ISeqable)
(t/ann-protocol [[x :variance :covariant]] cljs.core/ISeq
-first [(cljs.core/ISeq x) :-> (t/Nilable x)]
-rest [(cljs.core/ISeq x) :-> (cljs.core/ISeq x)])
;cljs.core/INext [[x :variance :covariant]]
(t/ann-protocol [[v :variance :covariant]] cljs.core/ILookup)
(t/ann-protocol [[k :variance :covariant]
[v :variance :covariant]]
cljs.core/IAssociative
-contains-key [(cljs.core/IAssociative k v) t/Any :-> t/Bool]
-assoc (t/All [k1 v1] [(cljs.core/IAssociative k v) k1 v1 :->
(cljs.core/IAssociative (t/U k k1) (t/U v v1))]))
(t/ann-protocol cljs.core/IMap
-dissoc [cljs.core/IMap t/Any :-> cljs.core/IMap])
(t/ann-protocol [[k :variance :covariant]
[v :variance :covariant]]
cljs.core/IMapEntry
-key [(cljs.core/IMapEntry k v) :-> k]
-val [(cljs.core/IMapEntry k v) :-> v])
(t/ann-protocol cljs.core/ISet
-disjoin (t/All [s] [s t/Any :-> s]))
(t/ann-protocol [[x :variance :covariant]]
cljs.core/IStack
-peek [(cljs.core/IStack x) :-> (t/U nil x)]
-pop [(cljs.core/IStack x) :-> (cljs.core/IStack x)])
(t/ann-protocol [[x :variance :covariant]]
cljs.core/IVector
-assoc-n (t/All [x1] [(cljs.core/IVector x) t/Num x1
:-> (cljs.core/IVector (t/U x x1))]))
(t/ann-protocol [[x :variance :covariant]]
cljs.core/IDeref
-deref [(cljs.core/IDeref x) :-> x])
(t/ann-protocol [[x :variance :covariant]]
cljs.core/IDerefWithTimeout
-deref-with-timeout [(cljs.core/IDerefWithTimeout x) :-> x])
(t/ann-protocol cljs.core/IMeta
-meta [cljs.core/IMeta :-> (t/Nilable (t/Map t/Any t/Any))])
(t/ann-protocol cljs.core/IWithMeta
-with-meta [cljs.core/IWithMeta (t/Nilable (t/Map t/Any t/Any)) :-> cljs.core/IWithMeta])
;TODO
;cljs.core/IReduce [[]]
(t/ann-protocol cljs.core/IKVReduce ;;TODO
-kv-reduce [cljs.core/IKVReduce [t/Any t/Any t/Any :-> t/Any] :-> t/Any])
(t/ann-protocol cljs.core/IList)
(t/ann-protocol cljs.core/IEquiv
-equiv [cljs.core/IEquiv t/Any :-> t/Bool])
(t/ann-protocol cljs.core/IHash
-hash [cljs.core/IHash :-> t/Num])
(t/ann-protocol cljs.core/ISequential)
(t/ann-protocol cljs.core/IRecord)
(t/ann-protocol [[x :variance :covariant]]
cljs.core/IReversible
-rseq [(cljs.core/IReversible x) :-> (t/NilableNonEmptySeq x)])
(t/ann-protocol [[k :variance :covariant]
[v :variance :covariant]] cljs.core/IFind
-find [(cljs.core/IFind k v) t/Any :-> (t/Nilable (cljs.core/IMapEntry k v))]
)
(t/ann-protocol [[x :variance :invariant]]
cljs.core/ISorted
-sorted-seq [(cljs.core/ISorted x) t/Bool :-> (t/Nilable (t/ASeq x))]
;; second arg => comparable?
-sorted-seq-from [(cljs.core/ISorted x) t/Any t/Bool :-> (t/Nilable (t/ASeq x))]
-entry-key [(cljs.core/ISorted x) t/Any :-> t/Any]
-comparator [(cljs.core/ISorted x) :-> [x x :-> t/Num]])
(t/ann-protocol cljs.core/IPending)
;cljs.core/IWriter [[]]
;cljs.core/IPrintWithWriter [[]]
; ;TODO
;;cljs.core/IWatchable [[]]
; ;cljs.core/IEditableCollection [[]]
; ;cljs.core/ITransientCollection [[]]
; ;cljs.core/ITransientAssociative [[]]
; ;cljs.core/ITransientMap [[]]
; ;cljs.core/ITransientVector [[]]
; ;cljs.core/ITransientSet [[]]
(t/ann-protocol [[x :variance :invariant]]
cljs.core/IComparable)
; ;cljs.core/IChunk [[]]
; ;cljs.core/IChunkedSeq [[]]
; ;cljs.core/IChunkedNext [[]]
(t/ann-protocol cljs.core/INamed
-named [cljs.core/INamed :-> t/Str]
-namespace [cljs.core/INamed :-> (t/Nilable t/Str)])
(t/ann-protocol [[x :variance :invariant]]
cljs.core/IVolatile
-vreset! (t/All [x] [(cljs.core/IVolatile x) x :-> x]))
#?@(:cljs [] :default [
clojure.java.shell/sh [t/Any :*
;would be nice (combine :* and kw args)
; t/Str :*
;& :optional {:in t/Any ;; any valid input to clojure.java.io/copy
; :inc-enc t/Str :out-env (t/U ':bytes t/Str)
; :env (t/U (Array t/Str) (t/Map t/Any t/Any))
; :dir (t/U t/Str java.io.File)}
:-> '{:exit t/Str
:out (t/U (Array byte) t/Str)
:err t/Str}]
clojure.java.browse/browse-url [t/Any :-> t/Any]
clojure.java.io/delete-file [clojure.java.io/Coercions (t/? t/Any) :-> t/Any]
clojure.java.io/make-parents [(t/+ clojure.java.io/Coercions) :-> t/Any]
clojure.java.io/file [(t/+ clojure.java.io/Coercions) :-> java.io.File]
clojure.java.io/as-relative-path [clojure.java.io/Coercions :-> t/Str]
;; TODO second arg is flattened IOFactoryOpts
clojure.java.io/reader [clojure.java.io/IOFactory :-> java.io.BufferedReader]
;; TODO second arg is flattened IOFactoryOpts
clojure.java.io/writer [clojure.java.io/IOFactory :-> java.io.BufferedWriter]
clojure.java.io/resource [t/Str (t/? ClassLoader) :-> (t/Nilable java.net.URL)]
clojure.stacktrace/e [:-> t/Any]
clojure.stacktrace/print-cause-trace [Throwable :-> t/Any]
clojure.stacktrace/print-stack-trace [Throwable :-> t/Any]
clojure.stacktrace/print-throwable [Throwable :-> t/Any]
clojure.stacktrace/root-cause [Throwable :-> Throwable]
;; FIXME keyword arguments
clojure.reflect/reflect [(t/+ t/Any) :-> (t/Map t/Any t/Any)]
clojure.inspector/atom? [t/Any :-> t/Bool]
clojure.inspector/collection-tag [t/Any :-> t/Keyword]
clojure.inspector/tree-model [t/Any :-> t/Any]
clojure.inspector/old-table-model [t/AnySeqable :-> t/Any]
clojure.inspector/inspect [t/Any :-> javax.swing.JFrame]
clojure.inspector/inspect-tree [t/Any :-> javax.swing.JFrame]
clojure.inspector/inspect-table [t/AnySeqable :-> javax.swing.JFrame]
])
cc/first (t/All [x] (t/IFn [(t/HSequential [x t/Any :*]) :-> x
:object {:id 0 :path [(Nth 0)]}]
[(t/EmptySeqable x) :-> nil]
[(t/NonEmptySeqable x) :-> x]
[(t/Seqable x) :-> (t/Option x)]))
cc/second (t/All [x] (t/IFn [(t/HSequential [t/Any x t/Any :*]) :-> x
:object {:id 0 :path [(Nth 1)]}]
[(t/Option (t/I (t/Seqable x) (t/CountRange 0 1))) :-> nil]
[(t/I (t/Seqable x) (t/CountRange 2)) :-> x]
[(t/Seqable x) :-> (t/Option x)]))
cc/ffirst (t/All [x] [(t/Seqable (t/Seqable x)) :-> (t/Nilable x)])
cc/nfirst (t/All [x] [(t/Seqable (t/Seqable x)) :-> (t/NilableNonEmptyASeq x)])
cc/group-by (t/All [x y] [[x :-> y] (t/Seqable x) :-> (t/Map y (t/NonEmptyAVec x))])
cc/fnext (t/All [x] [(t/Seqable x) :-> (t/Option x)])
cc/nnext (t/All [x] [(t/Seqable x) :-> (t/NilableNonEmptyASeq x)])
cc/nthnext (t/All [x] (t/IFn [nil t/AnyInteger :-> nil]
[(t/Seqable x) t/AnyInteger :-> (t/NilableNonEmptyASeq x)]))
cc/rest (t/All [x] [(t/Seqable x) :-> (t/ASeq x)])
cc/last (t/All [x] (t/IFn [(t/NonEmptySeqable x) :-> x]
[(t/Seqable x) :-> (t/U nil x)]))
cc/butlast (t/All [x] [(t/Seqable x) :-> (t/NilableNonEmptyASeq x)])
cc/next (t/All [x] (t/IFn [(t/Option (t/Coll x)) :-> (t/NilableNonEmptyASeq x)
:filters {:then (& (is (t/CountRange 2) 0)
(! nil 0))
:else (| (is (t/CountRange 0 1) 0)
(is nil 0))}]
[(t/Seqable x) :-> (t/NilableNonEmptyASeq x)]))
nubank/nodely
(ns nodely.samples.tutorial
(:require [nodely.api.v0 :as nodely :refer [>value >leaf >if >cond >sequence >and >or]]
[clojure.core.async :as async]))
;; A branch node is able to express conditional dependencies
;; We can create a branch with >if, the first argument is a condition node,
;; the second argument is the truthy node and the third argument is the falsey node
;; At evaluation, if condition node is truthy, truthy node will be evaluated
;; otherwise, falsey node is evaluated
(def a-branch (>if (>leaf (even? ?a))
a-value
a-leaf))
;; => #:nodely.data{:type :branch,
;; :condition #:nodely.data{:type :leaf
;; :inputs #{:a}
;; :fn #function[nodely.samples.tutorial/fn--28863]}
;; :truthy #:nodely.data{:type :value :value 1}
;; :falsey #:nodely.data{:type :leaf
;; :inputs #{:b :a}
;; :fn #function[nodely.samples.tutorial/fn--28857]}}
;; A sequence node is used to express a function mapping over a sequential value
;; The first argument is a dependency to a sequential value
;; The second argument is a function to be applied to each element of the sequence
(def a-sequence (>sequence inc ?a))