Back
vector? (clj)
(source)variable
(vector? x)
Return true if x implements IPersistentVector
Examples
penpot/penpot
#_:clj-kondo/ignore
(ns app.common.data.macros
"Data retrieval & manipulation specific macros."
(:refer-clojure :exclude [get-in select-keys str with-open min max])
#?(:cljs (:require-macros [app.common.data.macros]))
(:require
#?(:clj [clojure.core :as c]
:cljs [cljs.core :as c])
[app.common.data :as d]
[cljs.analyzer.api :as aapi]
[cuerdas.core :as str]))
It is not 100% equivalent, this macro does not removes not existing
keys in contrast to clojure.core/select-keys"
[target keys]
(assert (vector? keys) "keys expected to be a vector")
`{~@(mapcat (fn [key] [key (list `c/get target key)]) keys) ~@[]})
(defmacro get-in
"A macro version of `get-in`. Useful when the keys vector is known at
compile time (20-40% performance improvement)."
([target keys]
(assert (vector? keys) "keys expected to be a vector")
`(-> ~target ~@(map (fn [key] (list `c/get key)) keys)))
([target keys default]
(assert (vector? keys) "keys expected to be a vector")
(let [last-index (dec (count keys))]
`(-> ~target ~@(map-indexed (fn [index key]
(if (= last-index index)
(list `c/get key default)
(list `c/get key)))
keys)))))
(defmacro with-open
[bindings & body]
{:pre [(vector? bindings)
(even? (count bindings))
(pos? (count bindings))]}
(reduce (fn [acc bindings]
`(let ~(vec bindings)
(try
~acc
(finally
(d/close! ~(first bindings))))))
`(do ~@body)
(reverse (partition 2 bindings))))
(defmacro assert!
([expr]
`(assert! nil ~expr))
([hint expr]
(let [hint (cond
(vector? hint)
`(str/ffmt ~@hint)
(defmacro verify!
([expr]
`(verify! nil ~expr))
([hint expr]
(let [hint (cond
(vector? hint)
`(str/ffmt ~@hint)
clojure/core.typed
(ns clojure.core.typed.test.poly-record
(:require [clojure.core.typed :as t]))
;polymorphic
(defrecord> [[x :variance :covariant]]
FooP [a :- x,
b :- Number]
Object
(toString [this] \"\"))"
[& args]
(let [vbnd (when (vector? (first args))
(first args))
args (if vbnd
(next args)
args)
[nme fields & args] args]
`(do (ann-record
~@(concat (when vbnd
[vbnd])
nme
fields))
(defrecord ~nme ~(mapv first (partition 3 fields))
~@args))))
)
seancorfield/next-jdbc
(ns next.jdbc-test
"Basic tests for the primary API of `next.jdbc`."
(:require [clojure.core.reducers :as r]
[clojure.string :as str]
[clojure.test :refer [deftest is testing use-fixtures]]
[next.jdbc :as jdbc]
[next.jdbc.connection :as c]
[next.jdbc.test-fixtures
:refer [with-test-db db ds column
default-options stored-proc?
derby? hsqldb? jtds? mssql? mysql? postgres? sqlite?]]
[next.jdbc.prepare :as prep]
[next.jdbc.result-set :as rs]
[next.jdbc.specs :as specs]
[next.jdbc.types :as types])
(:import (com.zaxxer.hikari HikariDataSource)
(com.mchange.v2.c3p0 ComboPooledDataSource PooledDataSource)
(java.sql ResultSet ResultSetMetaData)))
(deftest basic-tests
;; use ds-opts instead of (ds) anywhere you want default options applied:
(let [ds-opts (jdbc/with-options (ds) (default-options))]
(testing "plan"
(is (= "Apple"
(reduce (fn [_ row] (reduced (:name row)))
nil
(jdbc/plan
ds-opts
["select * from fruit where appearance = ?" "red"]))))
(is (= "Banana"
(reduce (fn [_ row] (reduced (:no-such-column row "Banana")))
nil
(jdbc/plan
ds-opts
["select * from fruit where appearance = ?" "red"])))))
(testing "execute-one!"
(is (nil? (jdbc/execute-one!
(ds)
["select * from fruit where appearance = ?" "neon-green"])))
(is (= "Apple" ((column :FRUIT/NAME)
(jdbc/execute-one!
ds-opts
["select * from fruit where appearance = ?" "red"]))))
(is (= "red" (:fruit/looks-like
(jdbc/execute-one!
ds-opts
["select appearance as looks_like from fruit where id = ?" 1]
jdbc/snake-kebab-opts))))
(let [ds' (jdbc/with-options ds-opts jdbc/snake-kebab-opts)]
(is (= "red" (:fruit/looks-like
(jdbc/execute-one!
ds'
["select appearance as looks_like from fruit where id = ?" 1])))))
(jdbc/with-transaction+options [ds' (jdbc/with-options ds-opts jdbc/snake-kebab-opts)]
(is (= (merge (default-options) jdbc/snake-kebab-opts)
(:options ds')))
(is (= "red" (:fruit/looks-like
(jdbc/execute-one!
ds'
["select appearance as looks_like from fruit where id = ?" 1])))))
(is (= "red" (:looks-like
(jdbc/execute-one!
ds-opts
["select appearance as looks_like from fruit where id = ?" 1]
jdbc/unqualified-snake-kebab-opts)))))
(testing "execute!"
(let [rs (jdbc/execute!
ds-opts
["select * from fruit where appearance = ?" "neon-green"])]
(is (vector? rs))
(is (= [] rs)))
(let [rs (jdbc/execute!
ds-opts
["select * from fruit where appearance = ?" "red"])]
(is (= 1 (count rs)))
(is (= 1 ((column :FRUIT/ID) (first rs)))))
(let [rs (jdbc/execute!
ds-opts
["select * from fruit order by id"]
{:builder-fn rs/as-maps})]
(is (every? map? rs))
(is (every? meta rs))
(is (= 4 (count rs)))
(is (= 1 ((column :FRUIT/ID) (first rs))))
(is (= 4 ((column :FRUIT/ID) (last rs)))))
(let [rs (jdbc/execute!
ds-opts
["select * from fruit order by id"]
{:builder-fn rs/as-arrays})]
(is (every? vector? rs))
(is (= 5 (count rs)))
(is (every? #(= 5 (count %)) rs))
;; columns come first
(is (every? qualified-keyword? (first rs)))
;; :FRUIT/ID should be first column
(is (= (column :FRUIT/ID) (ffirst rs)))
;; and all its corresponding values should be ints
(is (every? int? (map first (rest rs))))
(is (every? string? (map second (rest rs))))))
(testing "execute! with adapter"
(let [rs (jdbc/execute! ; test again, with adapter and lower columns
ds-opts
["select * from fruit order by id"]
{:builder-fn (rs/as-arrays-adapter
rs/as-lower-arrays
(fn [^ResultSet rs _ ^Integer i]
(.getObject rs i)))})]
(is (every? vector? rs))
(is (= 5 (count rs)))
(is (every? #(= 5 (count %)) rs))
;; columns come first
(is (every? qualified-keyword? (first rs)))
;; :fruit/id should be first column
(is (= :fruit/id (ffirst rs)))
;; and all its corresponding values should be ints
(is (every? int? (map first (rest rs))))
(is (every? string? (map second (rest rs))))))
(testing "execute! with unqualified"
(let [rs (jdbc/execute!
(ds)
["select * from fruit order by id"]
{:builder-fn rs/as-unqualified-maps})]
(is (every? map? rs))
(is (every? meta rs))
(is (= 4 (count rs)))
(is (= 1 ((column :ID) (first rs))))
(is (= 4 ((column :ID) (last rs)))))
(let [rs (jdbc/execute!
ds-opts
["select * from fruit order by id"]
{:builder-fn rs/as-unqualified-arrays})]
(is (every? vector? rs))
(is (= 5 (count rs)))
(is (every? #(= 5 (count %)) rs))
;; columns come first
(is (every? simple-keyword? (first rs)))
;; :ID should be first column
(is (= (column :ID) (ffirst rs)))
;; and all its corresponding values should be ints
(is (every? int? (map first (rest rs))))
(is (every? string? (map second (rest rs))))))
(testing "execute! with :max-rows / :maxRows"
(let [rs (jdbc/execute!
ds-opts
["select * from fruit order by id"]
{:max-rows 2})]
(is (every? map? rs))
(is (every? meta rs))
(is (= 2 (count rs)))
(is (= 1 ((column :FRUIT/ID) (first rs))))
(is (= 2 ((column :FRUIT/ID) (last rs)))))
(let [rs (jdbc/execute!
ds-opts
["select * from fruit order by id"]
{:statement {:maxRows 2}})]
(is (every? map? rs))
(is (every? meta rs))
(is (= 2 (count rs)))
(is (= 1 ((column :FRUIT/ID) (first rs))))
(is (= 2 ((column :FRUIT/ID) (last rs)))))))
(testing "prepare"
;; default options do not flow over get-connection
(let [rs (with-open [con (jdbc/get-connection (ds))
ps (jdbc/prepare
con
["select * from fruit order by id"]
(default-options))]
(jdbc/execute! ps))]
(is (every? map? rs))
(is (every? meta rs))
(is (= 4 (count rs)))
(is (= 1 ((column :FRUIT/ID) (first rs))))
(is (= 4 ((column :FRUIT/ID) (last rs)))))
;; default options do not flow over get-connection
(let [rs (with-open [con (jdbc/get-connection (ds))
ps (jdbc/prepare
con
["select * from fruit where id = ?"]
(default-options))]
(jdbc/execute! (prep/set-parameters ps [4]) nil {}))]
(is (every? map? rs))
(is (every? meta rs))
(is (= 1 (count rs)))
(is (= 4 ((column :FRUIT/ID) (first rs))))))
(testing "statement"
;; default options do not flow over get-connection
(let [rs (with-open [con (jdbc/get-connection (ds))]
(jdbc/execute! (prep/statement con (default-options))
["select * from fruit order by id"]))]
(is (every? map? rs))
(is (every? meta rs))
(is (= 4 (count rs)))
(is (= 1 ((column :FRUIT/ID) (first rs))))
(is (= 4 ((column :FRUIT/ID) (last rs)))))
;; default options do not flow over get-connection
(let [rs (with-open [con (jdbc/get-connection (ds))]
(jdbc/execute! (prep/statement con (default-options))
["select * from fruit where id = 4"]))]
(is (every? map? rs))
(is (every? meta rs))
(is (= 1 (count rs)))
(is (= 4 ((column :FRUIT/ID) (first rs))))))
(testing "transact"
(is (= [{:next.jdbc/update-count 1}]
(jdbc/transact (ds)
(fn [t] (jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"]))
{:rollback-only true})))
(is (= 4 (count (jdbc/execute! (ds) ["select * from fruit"])))))
(testing "with-transaction rollback-only"
(is (not (jdbc/active-tx?)) "should not be in a transaction")
(is (= [{:next.jdbc/update-count 1}]
(jdbc/with-transaction [t (ds) {:rollback-only true}]
(is (jdbc/active-tx?) "should be in a transaction")
(jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"]))))
(is (= 4 (count (jdbc/execute! (ds) ["select * from fruit"]))))
(is (not (jdbc/active-tx?)) "should not be in a transaction")
(with-open [con (jdbc/get-connection (ds))]
(let [ac (.getAutoCommit con)]
(is (= [{:next.jdbc/update-count 1}]
(jdbc/with-transaction [t con {:rollback-only true}]
(is (jdbc/active-tx?) "should be in a transaction")
(jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"]))))
(is (= 4 (count (jdbc/execute! con ["select * from fruit"]))))
(is (= ac (.getAutoCommit con))))))
(testing "with-transaction exception"
(is (thrown? Throwable
(jdbc/with-transaction [t (ds)]
(jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"])
(is (jdbc/active-tx?) "should be in a transaction")
(throw (ex-info "abort" {})))))
(is (= 4 (count (jdbc/execute! (ds) ["select * from fruit"]))))
(is (not (jdbc/active-tx?)) "should not be in a transaction")
(with-open [con (jdbc/get-connection (ds))]
(let [ac (.getAutoCommit con)]
(is (thrown? Throwable
(jdbc/with-transaction [t con]
(jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"])
(is (jdbc/active-tx?) "should be in a transaction")
(throw (ex-info "abort" {})))))
(is (= 4 (count (jdbc/execute! con ["select * from fruit"]))))
(is (= ac (.getAutoCommit con))))))
(testing "with-transaction call rollback"
(is (= [{:next.jdbc/update-count 1}]
(jdbc/with-transaction [t (ds)]
(let [result (jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"])]
(.rollback t)
;; still in a next.jdbc TX even tho' we rolled back!
(is (jdbc/active-tx?) "should be in a transaction")
result))))
(is (= 4 (count (jdbc/execute! (ds) ["select * from fruit"]))))
(is (not (jdbc/active-tx?)) "should not be in a transaction")
(with-open [con (jdbc/get-connection (ds))]
(let [ac (.getAutoCommit con)]
(is (= [{:next.jdbc/update-count 1}]
(jdbc/with-transaction [t con]
(let [result (jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"])]
(.rollback t)
result))))
(is (= 4 (count (jdbc/execute! con ["select * from fruit"]))))
(is (= ac (.getAutoCommit con))))))
(testing "with-transaction with unnamed save point"
(is (= [{:next.jdbc/update-count 1}]
(jdbc/with-transaction [t (ds)]
(let [save-point (.setSavepoint t)
result (jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"])]
(.rollback t save-point)
;; still in a next.jdbc TX even tho' we rolled back to a save point!
(is (jdbc/active-tx?) "should be in a transaction")
result))))
(is (= 4 (count (jdbc/execute! (ds) ["select * from fruit"]))))
(is (not (jdbc/active-tx?)) "should not be in a transaction")
(with-open [con (jdbc/get-connection (ds))]
(let [ac (.getAutoCommit con)]
(is (= [{:next.jdbc/update-count 1}]
(jdbc/with-transaction [t con]
(let [save-point (.setSavepoint t)
result (jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"])]
(.rollback t save-point)
result))))
(is (= 4 (count (jdbc/execute! con ["select * from fruit"]))))
(is (= ac (.getAutoCommit con))))))
(testing "with-transaction with named save point"
(is (= [{:next.jdbc/update-count 1}]
(jdbc/with-transaction [t (ds)]
(let [save-point (.setSavepoint t (name (gensym)))
result (jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"])]
(.rollback t save-point)
result))))
(is (= 4 (count (jdbc/execute! (ds) ["select * from fruit"]))))
(with-open [con (jdbc/get-connection (ds))]
(let [ac (.getAutoCommit con)]
(is (= [{:next.jdbc/update-count 1}]
(jdbc/with-transaction [t con]
(let [save-point (.setSavepoint t (name (gensym)))
result (jdbc/execute! t ["
INSERT INTO fruit (name, appearance, cost, grade)
VALUES ('Pear', 'green', 49, 47)
"])]
(.rollback t save-point)
result))))
(is (= 4 (count (jdbc/execute! con ["select * from fruit"]))))
(is (= ac (.getAutoCommit con)))))))
mikera/core.matrix
WARNING: because they lack efficient indexed access, sequences will perform badly for most
array operations. In general they should be converted to other implementations before use."
(:require [clojure.core.matrix.protocols :as mp]
[clojure.core.matrix.implementations :as imp]
#?(:clj [clojure.core.matrix.macros :refer [scalar-coerce error]]))
#?(:clj (:import [clojure.lang ISeq])
:cljs (:require-macros [clojure.core.matrix.macros :refer [scalar-coerce error]])))
(extend-protocol mp/PDimensionInfo
ISeq
(dimensionality [m]
(inc (mp/dimensionality (first m))))
(is-vector? [m]
(== 0 (mp/dimensionality (first m))))
(is-scalar? [m]
false)
(get-shape [m]
#?(:cljs (js/console.log (str "shape of seq: " m)))
(cons (count m) (mp/get-shape (first m))))
(dimension-count [m x]
(if (== x 0)
(count m)
(mp/dimension-count (first m) (dec x)))))
typedclojure/typedclojure
(ns typed.clojure.jvm
"JVM-specific annotations and operations.
See typed.clojure for cross-platform ops."
(:require clojure.core.typed
[clojure.core.typed.current-impl :as impl]
[clojure.core.typed.internal :refer [take-when]]
[typed.cljc.runtime.env-utils :refer [delay-type]]
[clojure.core.typed.macros :as macros]))
(defmacro override-class [& args]
(let [[binder args] (take-when vector? args)
[nme args] (take-when symbol? args)
_ (assert (symbol? nme) (str "Missing name in override-class" [nme args]))
[opts args] (take-when map? args)
opts (if opts
(do (assert (empty? args) (str "Trailing args to override-class: " (pr-str args)))
opts)
(apply hash-map args))
this-ns (ns-name *ns*)]
`(clojure.core.typed/tc-ignore
(let [nme# (or (when-some [^Class c# (ns-resolve '~this-ns '~nme)]
(when (class? c#)
(-> c# .getName symbol)))
(throw (ex-info (str "Could not resolve class: " '~nme) {:class-name '~nme})))]
;; TODO runtime env
#_
(impl/add-rclass-env nme# {:op :RClass})
;; type env
;inline when-bindable-defining-ns
(macros/when-bindable-defining-ns '~this-ns
(impl/with-clojure-impl
(impl/add-rclass nme# (delay-type
((requiring-resolve 'typed.clj.checker.parse-unparse/with-parse-ns*)
'~this-ns
#((requiring-resolve 'typed.cljc.checker.base-env-helper/make-RClass)
nme#
'~binder
'~opts))))))))))